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Critical slowing down in synchronizing nonlinear oscillators

H. K. Leung*
Institute of Physics and Center for Complex Systems, National Central University, Chung-li, Taiwan 32054, Republic of Chi

~Received 23 April 1998!

We investigate the transient properties of two van der Pol oscillators that are interacting with various types
of couplings. As the coupling constant varies, the transient dynamics changes qualitatively and new interme-
diate or asymptotic attractors may appear. This can be considered as a kind of dynamic phase transition in
nonequilibrium systems. It is interesting to find that two nonlinear oscillators could be phase locked and
synchronized with appropriate couplings, and that critical slowing down might occur near the boundaries of the
synchronization domain. Besides the genuine asymptotic synchronization, we also observe the transient syn-
chronization that occurs only momentarily. For both classes of synchronization, the relevant exponent describ-
ing the slowing down dynamics is found to be equal to a mean field value of unity.@S1063-651X~98!11111-X#

PACS number~s!: 05.45.1b, 05.70.Fh, 64.60.Ht
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I. INTRODUCTION

Considerable attention has been given recently to the
namics of coupled systems, especially the synchronizatio
chaotic motions@1–4#. It is indeed an astonishing fact tha
two chaotic motions that are practically random and sensi
to initial conditions could be synchronized by a simple co
pling. While more and more systems are found to exh
chaotic synchronization with various types of coupling, tra
sient dynamics leading to the final synchronization dese
more attention. In this study, we investigate the synchro
zation dynamics of two limit cycle oscillators since the lim
cycle is a more elementary attractor and is much easie
monitor.

The van der Pol model of self-sustained oscillation can
described by an autonomous differential equation,

ẍ5 f ~x,ẋ!52ax2b ẋ~x221!. ~1!

This model and its variations, which were initially design
to describe oscillating circuits, have many applications
science and engineering@5#. It is an important model in non
linear dynamics since it is a paradigm for the limit cyc
Furthermore, this limit cycle can easily bifurcate to a fix
point by adding a constant bias term, and to a chaotic mo
by modulating with a simple periodic function of time.

In nonequilibrium systems, the phase transition is usu
associated with a bifurcation between attractors, which co
be fixed points, limit cycles, and the like@6#. When a control
parameter is adjusted toward its critical value, the dyna
system loses its stability and the existing phase yields
new one. Within a close vicinity of the instability, the rela
ation process from an initial state to the expected attra
slows down@7#. According to the linear stability analysis, th
slow transient process leading to a fixed point is charac
ized by a relaxation time that diverges to infinity following
simple power-law relationship,

Trel'uK2Kcu2g, g51.0, ~2!

*Electronic address: leung@joule.phy.ncu.edu.tw
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whereKc is the critical control parameter, and thecritical
exponentg assumes a mean field value of unity@7–12#.

This phenomenon ofcritical slowing downresembles that
which occurs in equilibrium systems. While it is a natur
consequence in the deterministic transition between fi
points, it is also observed in stochastic multistable system
which noise intensity is treated as a control parameter@9#. In
recent years, this unique behavior has also been detected
noisy Hopf bifurcation in which a fixed point yields to a lim
cycle @10#. The same phenomenon was also found in peri
doubling bifurcation of discrete maps@11# and in determin-
istic Hopf bifurcation@12#.

In this study, we investigate the transient process bef
synchronization of two limit cycles is finally achieved. W
observe the same phenomenon ofcritical slowing downnear
the boundaries of synchronization domains. We could in
pret the phenomena of synchronization and desynchron
tion as two nonequilibrium phases, and the transition be-
tween them as a result of stability loss. Therefore,
nonequilibrium phasesare now extended to include thos
dynamic aspects that are not necessarily the traditiona
tractors. It is striking to find that two limit cycle oscillator
could also reach transient synchronization that exists m
mentarily, and that this unique process exhibits critical slo
ing down as well.

In order to study the synchronization processes system
cally, we examine several types of interactions. Both o
and two-way couplings will be considered. Dynamic effec
caused by feedback coupling@2–4,13# will be compared with
those caused by driving with differences in locations@14–
16#.

II. ONE-WAY DRIVING WITH DIFFERENCE
IN LOCATIONS

When two identical van der Pol oscillators are start
with different initial conditions, their trajectories will circu
late along a common limit cycle with different phases. Sin
both circulations are nonuniform and have the same
quency, it is reasonable to expect that an oscillator driven
a difference in locations could manage to phase lock to
5704 © 1998 The American Physical Society
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other oscillator. In this section, we study the one-way driv
system described by

ẍ5 f ~x,ẋ!,
~3!

ü5 f ~u,u̇!1K~u2x!H~ t2T0!,

whereK is the driving constant andT0 is the onset time of
the driving. In the above, the functionf (x,ẋ) is given by Eq.
~1!, andH(x) is the Heaviside function defined by

H~x!5 H0,
1,

x,0
x>0. ~4!

The onset of driving is designed to guarantee that both
cillators have already relaxed to the limit cycle from the
initial states. For most cases,T0520 is used.

Numerical solution of Eqs.~3! is carried out by rewriting
them as a set of four coupled differential equations,

ẋ5y,

ẏ5 f ~x,y!,
~5!

u̇5v,

v̇5 f ~u,v !1K~u2x!H~ t2T0!,

which can be solved with the double precision Runge-Ku
scheme. Since a van der Pol oscillator witha5b51 takes a
period T'6.66, a time step ofdt50.01 is fine enough for
most cases. Extensive studies include all possible range
driving constantK, both positive and negative. Comput
tional time has been extended tot5108 or more in order to
scan for possible synchronization. For most cases, in
conditions (x0 ,y0)5(2,2) and (u0 ,v0)5(1,1) are used to
generate two limit cycle circulations with a phase lag, wh
is time dependent since the limit cycle oscillation is nonu
form. From time to time, different initial states are used
check the qualitative properties of the results.

Figure 1 shows that with properly chosenK values, the
slave system (u,v) could be phase locked to the master s
tem ~x,y! shortly after the driving is turned on. We definethe
synchronization timeas

Tsyn5tsyn2T0 , ~6!

FIG. 1. Synchronization is demonstrated in a coupled sys
described by Eq.~5! with driving constantK50.3. Solid and
dashed curves representx2u andy2v, respectively.
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wheretsyn is the time instant at which the two trajectories a
close enough to be considered as synchronized. A prac
criterion of synchronization could be defined as

d5A~x2u!21~y2v !2,1023. ~7!

For higher accuracy with smallerd,Tsyn will assume a larger
value. However, qualitative features discussed below rem
unchanged.

The result ofTsyn is plotted against the driving constantK
in Fig. 2. Thesynchronization domainis defined as the rang
of K over whichTsyn is finite. As shown in Fig. 2, it consists
of two parts: 0.0,K,1.0 andK,20.3904. It can be seen
that Tsyn diverges near the domain boundariesKc50 and
Kc51. The critical slowing-down behavior with expone
g51.0 is demonstrated in Fig. 3.

After the coupling initiates, the driven trajectory first d
tours from the force-free limit cycle, and then turns back
have a quick synchronization with the driver system~x,y!.
Slowing down of the synchronization process reflects
loss of stability for asymptotic synchronization, and the lo
of attraction to the original limit cycle. This argument a
plies to both critical values ofKc50 andKc51, since both
cases result in an instability for the synchronization proce

m FIG. 2. Synchronization time is plotted against coupling co
stant. The solid curve stands for one-way drive defined by Eq.~3!,
and dashed curve stands for two-way drive defined by Eq.~8!.

FIG. 3. Critical slowing downnear the boundary of a synchro
nization domain. The solid curves stand for one-way coupling w
critical coupling constant,Kc51.0 ~a! andKc50.0 ~b!. The dashed
curve stands for two-way coupling withKc50.0. Curve~c! repre-
sents an overlapping of two identical plots ofK.0 and K,0,
~with Kc50), for a modified two-way coupling defined by Eq.~9!.
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This unique phenomenon of critical slowing down resemb
that observed in equilibrium transitions, and in nonequil
rium systems undergoing Hopf bifurcation from a fixed po
to a limit cycle@9–12#. From the transitional point of view, i
is reasonable to suggest that both synchronization and de
chronization modes of coupled systems can be considere
nonequilibrium phases. Closer to the domain boundary o
Kc51.0, the driven trajectory takes a longer time in spir
ling about a deformed and displaced cycle before being
tracted back to the original cycle for a final synchronizatio
At the threshold value ofKc51, trajectory (u,v) is attracted
to the new limit cycle, as seen in Fig. 4~c!. For
K.1, (u,v) is continuously drifting away from the origina
cycle, as shown in Fig. 4~d!. No synchronization with~x,y! is
possible forK>1. This could be explained qualitatively i
the following. WhenK is positive, the restoring force for th
(u,v) oscillation is weakened, and is equal to zero asK
51. For K.1, the restoring force turns out to be repellin
and the original cycle loses its attraction to the disturb
trajectory. This also results in the asymmetry of synchro
zation domains forK.0 andK,0.

III. MUTUAL DRIVING WITH DIFFERENCES

The limit cycle is known to be a fairly strong attracto
since it attracts all trajectories except the one initiated fr
the trivial fixed point (x0 ,y0)5(0,0). In the previous sec
tion, we find that the driving with difference in location
would help the driven system to adjust its pace for a qu
synchronization with the driver system on the limit cycle.
was reported that both one- and two-way driving could res
in synchronization in chaotic systems@14–16#. In this sec-
tion, we investigate the synchronization dynamics of two

FIG. 4. Transient processes of one-way coupling defined by
~3!. Solid and dashed curves stand for the master system~x,y! and
slave system (u,v), respectively. In ~a!, synchronization is
achieved quickly withK50.92. In ~b!, only part of the synchroni-
zation process is shown~up to t5200) for K50.96. In ~c!, for
K5Kc51.0, (u,v) is attracted to a deformed and displaced lim
cycle. In ~d!, for K51.5, (u,v) is drifting with time and no syn-
chronization with ~x,y! is possible. In all four graphs, velocit
(y5 ẋ or v5u̇) is plotted against the position~x or u!.
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cillators with mutual coupling,

ẍ5 f ~x,ẋ!1K~x2u!H~ t2T0!,
~8!

ü5 f ~u,u̇!1K~u2x!H~ t2T0!.

Each of the two oscillators is adjusting its pace, according
the difference of its own position with respect to that of t
other.

With this symmetric coupling, both trajectories~x,y! and
(u,v) detour and then turn back to the original limit cycle f
a phase locking. As a result, synchronization is more eff
tive with mutual coupling. The correspondingTsyn is smaller
than that of one-way driving. Results are shown in Fig. 2 a
Fig. 3 for a comparison. However, the synchronization d
main does not expand accordingly. Again, it consists of t
parts: 0,K,0.4145 andK,20.2169.

Critical slowing down is also observed near the dom
boundary with Kc50.0, as shown in Fig. 3. Fo
K.0.4145, the deformed trajectories are attracted to a n
attractor of period three, and so there is no synchronizat
For larger K, the trajectory is drifting continuously awa
from its original cycle, in a manner similar to that shown
Fig. 4~d!.

Synchronization mechanism depends on the form of d
ing terms. We study another model of two-way coupling
modifying Eq.~8! slightly as

ẍ5 f ~x,ẋ!1K~u2x!H~ t2T0!,
~9!

ü5 f ~u,u̇!1K~u2x!H~ t2T0!.

It is found that for this antisymmetric coupling,Tsyn becomes
much larger while the synchronization domain expands
include all values ofK except the uncoupled case withK
50. It is also found that theTsyn K curve is symmetric with
respect toK50. These results are shown in Fig. 3, in whic
the curve~c! represents the two identical plots ofK.0 and
K,0.

IV. ONE-WAY FEEDBACK INTERACTION

When a van der Pol oscillator is driven by a simple sin
soidal function of time, the limit cycle can drift to othe
attractors, like the deformed limit cycle, torus, or chao
motion. The driving frequency and amplitude are treated
control parameters for these transitions@1#. It was reported
that @2–4# feedback between two chaotic attractors could
duce synchronization. In this section, we study the driv
effect due to a nonuniform oscillation, which is represen
by the feedback of another oscillator,

ẍ5 f ~x,ẋ!

~10!
ü5 f ~u,u̇!1KxH~ t2T0!.

For the uncoupled case withK50, the two independen
trajectories circulate along a common limit cycle with tim
dependent phase lag. ForKÞ0, the slave oscillator (u,v) is
modulated by a nonsinusoidal periodic functionx(t). The
trajectory (u,v) will be deformed since it is periodically
kicked by another one with the same frequency. As long
the master oscillator remains on the original cycle, synch

q.
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nization between them seems very unlikely. The same rea
applies to the case when the slave system is kicked in
reverse direction with negativeK.

Numerical results show that there is no genuine synch
nization indeed. Careful studies reveal that there exists a
narrow domain, 0,K,0.0039, over which, trajectory (u,v)
manages to stay on the original limit cycle without deform
tion. It is striking to find that, for small driving, (u,v) can
reach a transient synchronization with the undisturbed~x,y!
as shown in Fig. 5. If we adapt the same definition ofTsyn,
as defined by Eq.~6!, for the transient synchronization, w
observe the same critical slowing down nearKc50. The rel-
evant critical exponentg is also found to be one, as shown
Fig. 6.

Since this phenomenon occurs only once and, mom
tarily, an appropriate choice of synchronization criteriond
and time stepdt is required. Very detailed and careful inve
tigations are carried out to confirm this unique transient ch
acteristic. For such a small driving, the (u,v) trajectory does
remain on its original limit cycle all the time. In Fig. 7~a!, we
put together three sections of trajectories; each consists
least three circulations~with periodT'6.66). The first one
is the undisturbed~x,y! limit cycle recorded between 20<t
<40, the second one is~x,y! with 106<t<1061100, and the
third one is (u,v) with 106<t<1061100. The maximum
time used to investigate this unique behavior is 108. Figure

FIG. 5. Instantaneous synchronization in a one-way feedb
system defined by Eq.~10!. Solid and dashed curves stand f
x2u andy2v, respectively.

FIG. 6. Critical slowing downis demonstrated for~a! transient
synchronization in a one-way feedback system withK.Kc50, and
~b! asymptotic synchronization in a two-way feedback system w
K,Kc50.
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7~b! shows a typical case of a (u,v) trajectory, which is
deformed by larger driving. No synchronization is possib
for feedback withK>0.0039, and for reverse driving with
negativeK.

V. TWO-WAY PERIODIC DRIVING

Since periodic driving with sinusoidal or nonsinusoid
functions will cause deformation on the driven trajecto
there is no hope for a genuine synchronization. In this s
tion, we look for the possibility of synchronization of the tw
deformed trajectories by using mutual feedback,

ẍ5 f ~x,ẋ!1Ku H~ t2T0!

~11!

ü5 f ~u,u̇!1Kx H~ t2T0!.

We consider again the symmetric coupling with a comm
driving constantK.

The synchronization domain for this symmetrically dri
ing system has two parts: 0.1999,K,7.8 and 20.8255
,K,0.0. Critical slowing down occurs for negativeK near
Kc50.0. This is shown by curve~b! in Fig. 6. The synchro-
nization phenomenon is much more complicated for this m
tual feedback system, since both oscillators could be s
chronized on various attractors withx2u5y2v50. Within
the synchronization domain, both (u,v) and~x,y! approach a
new and smaller limit cycle and phase lock there, as sho

k

h

FIG. 7. Transient dynamics of coupled oscillators.~a! For one-
way feedback withK50.003, both (u,v) and ~x,y! remain on the
van der Pol limit cycle all the time, and reach an instantane
synchronization there.~b! For one-way feedback withK50.5, no
synchronization is achieved.~c! For two-way feedback with
K50.5, two oscillators synchronize on a deformed limit cycle.~d!
For two-way feedback withK50.15, there is no synchronizatio
since two trajectories@long dashed for~x,y! and short dashed fo
(u,v)] detour to different limit cycles. The solid curves are th
original van der Pol limit cycle. In all four graphs, velocity (y5 ẋ or
v5u̇) is plotted against the position~x or u!.
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5708 PRE 58H. K. LEUNG
in Fig. 7~c!. For K57.8, both trajectories approach a fixe
point at ~2.2, 0.0! and become stationary. Another stran
synchronization pattern is a nonstop drift, in which both t
jectories merge together and drift unbound, similar to t
shown in Fig. 4~d!.

For thoseK that lie outside the synchronization domai
trajectories~x,y! and (u,v) are deformed to different limit
cycles. Therefore, synchronization between them is imp
sible. A typical situation is shown in Fig. 7~d!.

By comparing these results with those in the previo
section, we can see that two-way coupling is more effec
in synchronizing two oscillators. It is interesting to find tha
unlike the case of one-way coupling, reverse feedback w
K,0 achieves the synchronization in a shorter time.
Fig. 8, we compare this situation forK50.3 with that for
K520.3.

VI. CONCLUSIONS AND DISCUSSIONS

The van der Pol limit cycle is a simple attractor that
periodic and is easy to keep track of. It is thus a practi
model for the investigation of synchronization dynamic
This study examines the transient processes leading to
chronization, and attempts to determine the synchroniza
domains for various coupled systems. With this sim
model, we are able to probe the phase transition propertie
nonequilibrium systems.

The critical slowing-down phenomenon observed n
the boundaries of synchronization domains reflects
unique transient dynamics when a phase transition p
is driven toward its instability. By treating the synchroniz
tion and the desynchronization phenomena as two dist
phases, a transition between them could be conside
as a special class of dynamic phase transition, which
unique only to nonequilibrium systems. For equilibriu
systems, phases are usually defined in terms of statio
order parameters with theory of phase transition and crit
phenomena well established, while the nonequilibriu
phases are defined in terms of dynamic attractors, and t
retical studies of the nonequilibrium transition are mu
more intricate. Linear stability analysis is a standard te
nique used to evaluate the critical exponentg for a transition
starting from a fixed point. Determination of the critic

FIG. 8. Two-way periodic feedback defined by Eq.~11! results
in a genuine synchronization. Solid and dashed curves stand
K50.3 andK520.3, respectively.
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exponentg for a transition starting from nonstationary attra
tors relies on numerical computations; results are so far m
ger for nonequilibrium transitions. In fact, it is still an ope
question concerning the possibility of critical slowing dow
in noisy systems in which a fixed point attractor cou
only be defined stochastically@7,17#. More numerical inves-
tigations are needed to clarify the nature of nonequilibriu
transitions, especially the critical slowing down in dynam
systems. In this report, we provide more numerical e
dence and extend the definition of nonequilibrium pha
to include the synchronization and nonsynchronizat
modes.

We find that synchronization can be achieved more eff
tively with two-way coupling, and by using the driving wit
differences in positions. On the other hand, the feedback
teraction is less effective. In fact, there is no real synchro
zation for a one-way feedback case, in which a respo
system is kicked periodically by a nonsinusoidal functi
representing nonuniform oscillation of the drive system. F
the case of two-way feedback, both systems are mutu
kicked so that both trajectories deform and it is possible
them to synchronize on a new attractor, which may be to
logically different from the original limit cycle. Monitoring
the complete transient process is therefore essential for
chronization studies.

The instantaneous synchronization that also exhibits c
cal slowing down is itself an interesting phenomenon, sin
this state is not an asymptotic attractor defined in a tra
tional way. It is only a transient process that occurs mom
tarily and once only. This phenomenon merits more inve
gation.

Synchronization is usually detected by monitoring t
vanishing of bothx2u andy2v. The choice of criteriond
should be flexible, and must be considered together with
choice of time stepdt in solving the equations numerically
This is especially true if one is to detect the transient s
chronization, or to distinguish the transient one from t
genuine one. We emphasize again the importance of the t
sient processes leading to synchronization, since we find
two systems could be synchronized on various states, w
might be limit cycle, fixed point, nonstationary drift, or prob
ably chaotic motion.

Synchronization in chaotic systems is much more in
cate. Indeed it was found that identifying a chaotic synch
nization might depend on the choice of time step@18#, and
on the computational precision@19,20#. Results in the
present simple systems could help us to understand
mechanism and the dynamics of chaotic synchronizat
Research along this line is under way.
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