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Critical slowing down in synchronizing nonlinear oscillators

H. K. Leund
Institute of Physics and Center for Complex Systems, National Central University, Chung-li, Taiwan 32054, Republic of China
(Received 23 April 1998

We investigate the transient properties of two van der Pol oscillators that are interacting with various types
of couplings. As the coupling constant varies, the transient dynamics changes qualitatively and new interme-
diate or asymptotic attractors may appear. This can be considered as a kind of dynamic phase transition in
nonequilibrium systems. It is interesting to find that two nonlinear oscillators could be phase locked and
synchronized with appropriate couplings, and that critical slowing down might occur near the boundaries of the
synchronization domain. Besides the genuine asymptotic synchronization, we also observe the transient syn-
chronization that occurs only momentarily. For both classes of synchronization, the relevant exponent describ-
ing the slowing down dynamics is found to be equal to a mean field value of {81963-651X98)11111-X

PACS numbgs): 05.45:+hb, 05.70.Fh, 64.60.Ht

I. INTRODUCTION whereK, is the critical control parameter, and tletical
exponenty assumes a mean field value of uni~12).
Considerable attention has been given recently to the dy- This phenomenon dfritical slowing downresembles that

namics of coupled systems, especially the synchronization afhich occurs in equilibrium systems. While it is a natural
chaotic motiond1-4]. It is indeed an astonishing fact that consequence in the deterministic transition between fixed
two chaotic motions that are practically random and sensitivgyints, it is also observed in stochastic multistable systems in
to initial conditions could be synchronized by a simple cou-which noise intensity is treated as a control parami@rin
pling. While more and more systems are found to exhibitecent years, this unique behavior has also been detected in a
chaotic synchronization with various types of coupling, tran-ngisy Hopf bifurcation in which a fixed point yields to a limit

sient dynamics leading to the final synchronization deser\{%yc|e[1o]_ The same phenomenon was also found in period-

more attention. In this study, we investigate the synchroniyq pjing bifurcation of discrete mapé1] and in determin-
zation dynamics of two limit cycle oscillators since the limit ;4 Hopf bifurcation[12].

cycle is a more elementary attractor and is much easier t0 |, this study, we investigate the transient process before

monitor. , o synchronization of two limit cycles is finally achieved. We
The van der Pol model of self-sustained oscillation can b psarve the same phenomenorcufical slowing downnear
described by an autonomous differential equation, the boundaries of synchronization domains. We could inter-
pret the phenomena of synchronization and desynchroniza-
tion as twononequilibrium phasesand the transition be-
) _ o ) L _ tween them as a result of stability loss. Therefore, the
This model and its variations, which were initially designed nonequilibrium phasesre now extended to include those
to describe oscillating circuits, have many applications ingynamic aspects that are not necessarily the traditional at-
science and engineerifi§]. It is an important model in non-  yctors. It is striking to find that two limit cycle oscillators
linear dynamics since it is a paradigm for the limit cycle. .q1q also reach transient synchronization that exists mo-
Furthermore, this limit cycle can easily bifurcate to a fixed yentarily, and that this unique process exhibits critical slow-
point by adding a constant bias term, and to a chaotic mouo;hg down as well.
by modulating with a simple periodic function of time. In order to study the synchronization processes systemati-
In nonequilibrium systems, the phase transition is usuallygly we examine several types of interactions. Both one-
associated with a bifurcation between attractors, which could 4 two-way couplings will be considered. Dynamic effects

be fixed poi_nts, I_imit cycles, anq the_li_l{é]. When a control _caused by feedback couplifig—4,13 will be compared with
parameter is gdjusteq _toward its crm_cgl value, the.dynam|(fhose caused by driving with differences in locatidag—
system loses its stability and the existing phase yields to 36).

new one. Within a close vicinity of the instability, the relax-
ation process from an initial state to the expected attractor
slows dowr[7]. According to the linear stability analysis, the
slow transient process leading to a fixed point is character-

X="f(x,X)=—ax— Bx(x*—1). (1)

II. ONE-WAY DRIVING WITH DIFFERENCE

ized by a relaxation time that diverges to infinity following a IN LOCATIONS
simple power-law relationship, When two identical van der Pol oscillators are started
with different initial conditions, their trajectories will circu-
Ter~| K=K 7?7, y=1.0, 2 late along a common limit cycle with different phases. Since

both circulations are nonuniform and have the same fre-
quency, it is reasonable to expect that an oscillator driven by
*Electronic address: leung@joule.phy.ncu.edu.tw a difference in locations could manage to phase lock to the
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FIG. 1. Synchronization is demonstrated in a coupled system FIG. 2. Synchronization time is plotted against coupling con-
described by Eq.(5) with driving constantK=0.3. Solid and stant. The solid curve stands for one-way drive defined by(8q.
dashed curves represent u andy—uv, respectively. and dashed curve stands for two-way drive defined by(&q.

other oscillator. In this section, we study the one-way drivingwheret,,, is the time instant at which the two trajectories are
system described by close enough to be considered as synchronized. A practical

. . criterion of synchronization could be defined as
x=f(x,X),

U=f(u,u)+K(u—x)H(t—Ty), @ s=\(x—u)?+(y-v)2<1073, (7)

whereK is the driving constant andl, is the onset time of ~For higher accuracy with smallét Ty, will assume a larger
the driving. In the above, the functidifx,x) is given by Eq.  value. However, qualitative features discussed below remain

(1), andH(x) is the Heaviside function defined by unchanged. _ _ o
The result ofT, is plotted against the driving constafit
0, x<0 in Fig. 2. Thesynchronization domaiis defined as the range
H(x)= 1, x=0. (4) of K over whichTgy, is finite. As shown in Fig. 2, it consists

of two parts: 0.8cK<1.0 andK<—0.3904. It can be seen
The onset of driving is designed to guarantee that both osthat T, diverges near the domain boundariés=0 and
cillators have already relaxed to the limit cycle from their K ,=1. The critical slowing-down behavior with exponent

initial states. For most caseby= 20 is used. v=1.0 is demonstrated in Fig. 3.
Numerical solution of Eqs(3) is carried out by rewriting After the coupling initiates, the driven trajectory first de-
them as a set of four coupled differential equations, tours from the force-free limit cycle, and then turns back to
: have a quick synchronization with the driver systéxy).
X=Y, Slowing down of the synchronization process reflects the
: loss of stability for asymptotic synchronization, and the loss
y=f(xy), of attraction to the original limit cycle. This argument ap-

©) plies to both critical values dk,=0 andK =1, since both

u=v, cases result in an instability for the synchronization process.

v="F(u,v)+K(U=x)H(t—Ty),

which can be solved with the double precision Runge-Kutta
scheme. Since a van der Pol oscillator with- =1 takes a
period T~6.66, a time step ofit=0.01 is fine enough for
most cases. Extensive studies include all possible ranges of
driving constantK, both positive and negative. Computa-
tional time has been extendedtte 10° or more in order to
scan for possible synchronization. For most cases, initial
conditions &g,Yo)=(2,2) and (g,vg)=(1,1) are used to

generate two limit cycle circulations with a phase lag, which 10
is time dependent since the limit cycle oscillation is nonuni- 107° 10 107 1
form. From time to time, different initial states are used to K=K
. . . o4
check the qualitative properties of the results.
Figure 1 shows that with properly chos&nvalues, the FIG. 3. Critical slowing downnear the boundary of a synchro-

slave systemu,v) could be phase locked to the master sys-nization domain. The solid curves stand for one-way coupling with
tem(x,y) shortly after the driving is turned on. We defittee  critical coupling constant.=1.0(a) andK.=0.0 (b). The dashed
synchronization times curve stands for two-way coupling witk.=0.0. Curve(c) repre-
sents an overlapping of two identical plots Kf>0 and K<O,
Tsyn=tsyn— To, (6)  (with K,=0), for a modified two-way coupling defined by E§).
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cillators with mutual coupling,

x=f(x,X) +K(x—u)H(t—Ty),
8
u="f(u,u)+Ku—x)H(t—Typ). ®

Each of the two oscillators is adjusting its pace, according to
the difference of its own position with respect to that of the

other.
With this symmetric coupling, both trajectori¢s,y) and
4.0 : 5.0 : : (u,v) detour and then turn back to the original limit cycle for
30l (d) ] a phase locking. As a result, synchronization is more effec-

tive with mutual coupling. The correspondifg,, is smaller
than that of one-way driving. Results are shown in Fig. 2 and
Fig. 3 for a comparison. However, the synchronization do-
main does not expand accordingly. Again, it consists of two
" parts: 0<K<0.4145 andK < —0.2169.
4O 30 215 10 -5 o & Critical slowing down is also observed near the domain
boundary with K.=0.0, as shown in Fig. 3. For
FIG. 4. Transient processes of one-way coupling defined by EqK >0.4145, the deformed trajectories are attracted to a new
(3). Solid and dashed curves stand for the master sys&tgynand  attractor of period three, and so there is no synchronization.
slave system Y,v), respectively. In(a), synchronization is For |argerK, the trajectory is drifting continuously away
achieved quickly withk=0.92. In (b), only part of the synchroni- o jts original cycle, in a manner similar to that shown in
zation process is showfup to t=200) for K=0.96. In (c), for Fig. 4(d).
K=K:=1.0, (u,v) is attracted to a deformed and displaced limit Synchronization mechanism depends on the form of driv-

cycle. In (d), for K=1.5, (u,v) is drifting with time and no syn- . ) :
chronization with(x,y) is possible. In all four graphs, velocity Inqg;ﬁ;mz ;qu(g;usﬁéri?;:]:r model of two-way coupling by

(y=x orv=u) is plotted against the positiox or u).

0.0F¢ ~-~-—«-~-~~w~«..~\..-‘;\.k.,\£,‘
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Xx=f(x,X) +K(u—x)H(t—Ty),

This unique phenomenon of critical slowing down resembles 9)

that observed in equilibrium transitions, and in nonequilib- u="f(u,u)+Ku—x)H(t—Ty).

rium systems undergoing Hopf bifurcation from a fixed point

to a limit cycle[9—12]. From the transitional point of view, it Itis found that for this antisymmetric couplin@s,, becomes

is reasonable to suggest that both synchronization and desyfuch larger while the synchronization domain expands to
chronization modes of coupled systems can be considered &¢lude all values oK except the uncoupled case wika
nonequilibrium phasesCloser to the domain boundary of =0. Itis also found that th&,,, K curve is symmetric with
K.=1.0, the driven trajectory takes a longer time in spiral-respect to< =0. These results are shown in Fig. 3, in which
ling about a deformed and displaced cycle before being athe curve(c) represents the two identical plots Kf>0 and
tracted back to the original cycle for a final synchronization.K<0.

At the threshold value oK .=1, trajectory (1,v) is attracted

to the new limit cycle, as seen in Fig.(chk For IV. ONE-WAY FEEDBACK INTERACTION

K>1, (u,v) is continuously drifting away from the original
cycle, as shown in Fig.(d). No synchronization witlix,y) is
possible forK=1. This could be explained qualitatively in
the following. WherK is positive, the restoring force for the
(u,v) oscillation is weakened, and is equal to zerokas

=1. ForK>1, the restoring force turns out to be repelling X .
and the original cycle loses its attraction to the disturbec%hat[z_éﬂ fﬁedb_acr bet\l/vetehn_ two cthaotlc attrta((:jtortshcoglpl In-
trajectory. This also results in the asymmetry of synchroni- ;chetsdynctronlza |on._f n this s_ﬁctl_on, Wﬁ_shu_ y the ”V'tn%
sation domains fok >0 andK <0 effect due to a nonuniform oscillation, which is represente

by the feedback of another oscillator,

When a van der Pol oscillator is driven by a simple sinu-
soidal function of time, the limit cycle can drift to other
attractors, like the deformed limit cycle, torus, or chaotic
motion. The driving frequency and amplitude are treated as
control parameters for these transitidig. It was reported

Ill. MUTUAL DRIVING WITH DIFFERENCES 5'(=f(x,)'()
- . . . (10)
The limit cycle is known to be a fairly strong attractor u="f(u,u) +KxH(t—Tp).
since it attracts all trajectories except the one initiated from
the trivial fixed point &q,Yo) =(0,0). In the previous sec- For the uncoupled case witi=0, the two independent

tion, we find that the driving with difference in locations trajectories circulate along a common limit cycle with time-
would help the driven system to adjust its pace for a quickdlependent phase lag. Fiér= 0, the slave oscillatory,v) is
synchronization with the driver system on the limit cycle. It modulated by a nonsinusoidal periodic functig(t). The
was reported that both one- and two-way driving could resultrajectory @,v) will be deformed since it is periodically

in synchronization in chaotic systerh$4—164. In this sec- kicked by another one with the same frequency. As long as
tion, we investigate the synchronization dynamics of two osthe master oscillator remains on the original cycle, synchro-
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FIG. 5. Instantaneous synchronization in a one-way feedback 9-0 0.0¢
system defined by Eq10). Solid and dashed curves stand for
X—u andy—v, respectively. E
o . -4.0 - —-4.0 .
nization between them seems very unlikely. The same reaso., ~3-° 0.0 5.0  -3.0 0.0 3.0

applies to the case when the slave system is kicked in the FIG. 7. Transient dynamics of coupled oscillatdi®. For one-

reverse direction with negativé. _ _ way feedback wittK =0.003, both ¢,v) and (x,y) remain on the
Numerical results show that there is no genuine synchrogan der pol limit cycle all the time, and reach an instantaneous
nization indeed. Careful StudieS reVeal that there eXiStS a Ver%nchronization therdb) For one-way feedback W|tK:OS, no
narrow domain, 82K <0.0039, over which, trajectoryu(v)  synchronization is achieved(c) For two-way feedback with
manages to stay on the original limit cycle without deforma-k =0.5, two oscillators synchronize on a deformed limit cy¢t.
tion. It is striking to find that, for small driving,W,v) can  For two-way feedback withK =0.15, there is no synchronization
reach a transient synchronization with the undisturbeg since two trajectorieglong dashed for(x,y) and short dashed for
as shown in Fig. 5. If we adapt the same definitionTg,, (u,v)] detour to different limit cycles. The solid curves are the
as defined by Eq(6), for the transient synchronization, we original van der Pol limit cycle. In all four graphs, velocity+ X or
observe the same critical slowing down n&ar=0. The rel- v=U) is plotted against the positiafx or u).
evant critical exponeny is also found to be one, as shown in
Fig. 6. 7(b) shows a typical case of aufv) trajectory, which is
Since this phenomenon occurs only once and, momerdeformed by larger driving. No synchronization is possible
tarily, an appropriate choice of synchronization criteri®n for feedback withK=0.0039, and for reverse driving with
and time steplt is required. Very detailed and careful inves- negativeK.
tigations are carried out to confirm this unigue transient char-
acteristic. For such a small driving, the,{) trajectory does
remain on its original limit cycle all the time. In Fig(&), we
put together three sections of trajectories; each consists of at Since periodic driving with sinusoidal or nonsinusoidal

least three circulationéwith period T~6.66). The first one functions will cause deformation on the driven trajectory,
is the undisturbedx,y) limit cycle recorded between 20  there is no hope for a genuine synchronization. In this sec-
<40, the second one {g,y) with 10°<t<10°+100, and the  tion, we look for the possibility of synchronization of the two
third one is (1,v) with 10°<t<10°+100. The maximum deformed trajectories by using mutual feedback,

time used to investigate this unique behavior i§. IBigure

V. TWO-WAY PERIODIC DRIVING

Xx=f(x,X)+Ku H(t—Tg)

11

u="f(u,u)+Kx H(t—T).

We consider again the symmetric coupling with a common
driving constank.

The synchronization domain for this symmetrically driv-
ing system has two parts: 0.199K<7.8 and —0.8255
] <K <0.0. Critical slowing down occurs for negati¥enear
et K.=0.0. This is shown by curvé) in Fig. 6. The synchro-
10 2 nization phenomenon is much more complicated for this mu-

K| tual feedback system, since both oscillators could be syn-
chronized on various attractors wiit-u=y—uv = 0. Within

FIG. 6. Critical slowing downis demonstrated fofa) transient ~ the synchronization domain, both,@) and(x,y) approach a
synchronization in a one-way feedback system WithK .= 0, and new and smaller limit cycle and phase lock there, as shown
(b) asymptotic synchronization in a two-way feedback system with
K<K.=0.
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3.0 e A R ] exponenty for a transition starting from nonstationary attrac-
g ] tors relies on numerical computations; results are so far mea-
] ger for nonequilibrium transitions. In fact, it is still an open
: guestion concerning the possibility of critical slowing down
] in noisy systems in which a fixed point attractor could
] only be defined stochastically,17]. More numerical inves-
. tigations are needed to clarify the nature of nonequilibrium
] transitions, especially the critical slowing down in dynamic
. ] systems. In this report, we provide more numerical evi-
-3 0bns o T dence and extend the definition of nonequilibrium phases
0 >0 100 150 to include the synchronization and nonsynchronization
f modes.
We find that synchronization can be achieved more effec-
FIG. 8. Two-way periodic feedback defined by Egl) results tively with two-way coupling, and by using the driving with
in a genuine synchronizatior). Solid and dashed curves stand f‘Hifferences in positions. On the other hand, the feedback in-
K=0.3 andK=—0.3, respectively. teraction is less effective. In fact, there is no real synchroni-
zation for a one-way feedback case, in which a response
system is kicked periodically by a nonsinusoidal function

point at (2.2, 0.0 and become stationary. Another Strangerepresentlng nonuniform oscillation of the drive system. For

o ) o : “the case of two-way feedback, both systems are mutually
synchronization pattern is a nonstop drift, in which both tra #icked so that both trajectories deform and it is possible for

jectories merge together and drift unbound, similar to tha ) .
them to synchronize on a new attractor, which may be topo-

shown in Fig. 4d). . . L o o
For thoseK that lie outside the synchronization domain, logically different from the original limit cycle. Monitoring

trajectories(x,y) and (U,v) are deformed to different limit the cqmpilete transient process is therefore essential for syn-
cycles. Therefore, synchronization between them is imposchronization studies. o S
sible. A typical situation is shown in Fig.(a). The instantaneous synchronization that also exhibits criti-

By comparing these results with those in the previouscal slowing down is itself an interesting phenomenon, since
section, we can see that two-way coupling is more effectivéhis state is not an asymptotic attractor defined in a tradi-
in synchronizing two oscillators. It is interesting to find that, tional way. It is only a transient process that occurs momen-
unlike the case of one-way coupling, reverse feedback witttarily and once only. This phenomenon merits more investi-
K<0 achieves the synchronization in a shorter time. Ingation.

in Fig. 7(c). For K=7.8, both trajectories approach a fixed

Fig. 8, we compare this situation fa¢=0.3 with that for Synchronization is usually detected by monitoring the
K=-0.3. vanishing of bottx—u andy—wv. The choice of criteriors
should be flexible, and must be considered together with the
VI. CONCLUSIONS AND DISCUSSIONS choice of time stemt in solving the equations numerically.

This is especially true if one is to detect the transient syn-

The van der Pol limit cycle is a simple attractor that is chronization, or to distinguish the transient one from the
periodic and is easy to keep track of. It is thus a practicalenuine one. We emphasize again the importance of the tran-
model for the investigation of synchronization dynamics.gjent processes leading to synchronization, since we find that
This study examines the transient processes leading 10 Syfy systems could be synchronized on various states, which

chronization, and attempts to determine the synchronizatiomight be limit cycle, fixed point, nonstationary drift, or prob-

domains for various coupled systems. With this 5|mpleably chaotic motion.

model, we are able to probe the phase transition properties in Synchronization in chaotic systems is much more intri-

noq_i(lwgﬁtrilgg z?lc?\}\irr?s:aown henomenon observed nearc:ate. Indeed it was found that identifying a chaotic synchro-
9 b ization might depend on the choice of time sfd@], and

the boundaries of synchronization domains reflects the X . .
unique transient dynamics when a phase transition poin?n the cpmputatlonal precisiofl9,2q. Results in the
resent simple systems could help us to understand the

is driven toward its instability. By treating the synchroniza- P ) ; . o
tion and the desynchronization phenomena as two distind'€chanism and the dynamics of chaotic synchronization.

phases a transition between them could be consideredX&Search along this line is under way.

as a special class of dynamic phase transition, which is

unique only to nonequilibrium systems. For equilibrium

systems, phases are usually defined in terms of stationary ACKNOWLEDGMENTS
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